
AD

TECHNICAL REPORT

GIT-ICS-81/12 [EVELX$

A REMOTE TERMINAL EMULATOR
S00 FOR PRIME COMPUTERS

By

O Daniel H. Forsyth, Jr. DTIC
ELECTE,.1,

Prepared for DEC 2 3198W

OFFICE OF NAVAL RESEARCH
800 N. QUINCY STREET E
ARLINGTON, VIRGINIA 22217

Under

Contract No. N00014-79-C-0873
GIT Project No. G36-643

August 1981

GEORGIA INSTITUTE OF TECHNOLOGY
S- A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
11 ia,, SCHOOL OF INFORMATION AND COMPUTER SCIENCE

ATLANTA, GEORGIA 30332

T o-=.,,O-- 81 1d2e 0-8 7.-,.

THE RESEARCH PROGRAM IN
L." FULLY DISTRIBUTED PROCESSING S

A REMOTE TERMINAL EMULATOR FOR PRIME COMPUTERS

TECHNICAL REPORT

GIT-ICS-81/12

Daniel H. Forsyth, Jr. -- 1

August, 1981 Avail

Office of Naval Research
800 N. Quincy Street

Arlington, Virginia 22217

Contract No. N00014-79-C-0873
GIT Project No. G36-643

The Georgia Tech Research Program in

Fully Distributed Processing Systems

School of Information and Computer Science

Georgia Institute of Technology
Atlanta, Georgia 30332

71

I '

THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF
THE AUTHORS AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMFNT OF THE
NAVY POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER
DOCUMENTATION.

* '

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (*Wona Data Entered)- -

REPOTDCUMETAT~)N AGEREAD INSTRUCTIONSREPRTDOUMNTTINAG BEFORECOMPLETINGFORM
I.- REPORT NU il It. 0 VT ACCESSION NO, 3 RECIPIENT'S CATALOG NUMBER

GIT-ICS-81/12 A -AA&I ýa __Z _____ _____

4. TITLE (and Subtit) S. TYPE OF REPORT 6 PERIOD COVERED

Technical Report

A Remote Terminal Emulator August 1981
6. PERFORMING ORG. REP AT NUMBER

For PRiME Computers GIT-ICS- 81/12 1
7. AUTH4OR(&) 4. CONTRACT ON GRANT NUMBIER(s)

Daniel H. Forsyth, Jr. N00014-79-C-0873

2. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

School of Information and Computer Science AE OKUI UBR

Georgia Institute of Technology
Atlanta, Georgia 30332 _______________

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATEVOffice of Naval Research August 1981
80N. QunyStreet 13. NUMBER OF PAGES

Arlington, Virginia 22217
_14. MONITORING AGENCY NAME AADORESS(If different from Controlling Ollie*) IS. SECUARITY CL ASS. (of this report)

Unclassified
15a. DECLASSIFICATION'OOWNGADING

n~CNEDULE

W6 DISTRIBUTION STATEMENT (of this Report.)

Approved for public release; distribution limited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if ditll rent from Report)

I9. SUPPLEMENTARY NOTES
The view, opinions and/or findings contained in this report are those of the
author and should not be construed as an official Department of the Navy
position, policy, or decision unless so designated by other documentation.

19 KEY WORDS (Continue on reverse side if necessary and identify by block number)

Remote terminal emulator
Performance evaluation for time-shared systems
Benchmarking

Z0\ ABSTRACT (Conhinue on roverse side It necessary and Identify by block number)
-Aremote terminal emulator is a device that emulates sources of on-line input
to a computer system, and is one of the most reliable tools for measuring the
performance of time-shared computer systems. The remote terminal emulator
described in this report provides simultaneous emulation for a number of

~ I communicat ion lines as well as the software necessary for the preparation of
scripts (a oequence of actions to be performed by the emulator) the setup and
control of test sessions, and the analysis of test results.<--_--_

DD IJAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS :)AGE flt3ien Data Firieied)

Unclassified-
-I. ~SKCUMITY CLASSIFICATION Of THIS PAGit(Iflm Data Iat.red) .

7AA

S~iii

Summary

A remote teminal emulator (RTE) is a device that emulates s3ources

of on-line input to a computer system. An RTE is one of the most raliable

tools for measuring the performance of time-shared computer systuus. In

order to emulate a wide variety of interactive input devices, an RTE is

controlled by programs known as scripts. A script describes a sequence of

actions to be performed by the RTE. Such a "equence might include messages

to be transmitted to the system under test along with their timing,

responses possible from the system under test, and actions to be taken

after a specific response is received. As well as performing actions as

specified by the scripts, the RTE records all the communication activity

for later analysis.

The remote terminal emulator described herein runs on a Prime 400 or

larger computer system under the standard vendor-supplied operating system.

It provides simultaneous emulation for a number of communications lines as

well as the software necessary for the preparation of scripts, the setup

and control of test sessions, and the analysis of test results.

Georgia Institute of Technology Remote Terminal mulator

LiV

TVLE OF CONTENTS

Chapter 1 Introduction g.... 1

1.1 Purposes of Performance Measurement 1
1.2 Techniques for Performance Measurement 3
1.3 Benchmark Techniques . 5
1.4 Other Work 6

Chapter 2 The RTE Project . 9

2.1 Objectives 9
2.2 Design Decisions 10
2.3 Implementation Sketch 13

2.3.1 The Script Preprocessor 15
2.3.2 The Script Interpreter 16
2.3.3 The Session Analyzer 17

Chapter 3 Conclusion 18

3.1 Evlain 1...: : 8
3.2 Reconmendations . 23

Acknowledgements 25

Bibliography 26

Georgia Institute of Technology Remote Terminal Emulator

_ _ _ _ _ _ _ _ _ _ _ ",,

vi

LIST OF TABLE

Table 1 OperationoftheRTE 1

Table 2 Requirements for an RTE 18

Table 3 Character Transmission Events 19

II

Georgia Institute of Technology Remote Terminal Emulator

vii

LIST OF IWUJSTRATlONS

Figure 1 Purposes of Performance Measurement

Figure 2 Techniques for Performance Measurement 3

Figure 3 Remote Terminal Eulation 8

Figure 4 Structure of the RTE Implementation 14

Gt

Georgia Institute of Technology Remote Termninal Emulator

Chapter 1 Introduction Page 1

Introuaio

The performance, or operational behavior, of a soft•are system
is of prime importance to everyone concerned with the system -
designers, implementors, and users. Obtaining and evaluating
data on a system's performance must be an integral part of the
process of creating systems [Freeman 75].

One of the goals of the on-going research in the School of Informa-

tion and Computer Science is the creation of a teatbed facility for the

implementation and evaluation of fully distributed processing systems

(FDPS). An essential feature of the testbed is the requirement to

empirically evaluate the performance of fully distributed processing

systems during their implementation. Providing a facility that measures
these Systems by generating an external load and measuring external

response is the topic of this thesis.

161 •am a o• fr ns •aul n

There are three general purposes of performance evaluation:
selection evaluation, performance projection, and performance monitoring

[Lucas 71]. These are shown in Figure 1.

I Performance Measurement I

ISelection I IPerformance 1 IPerformanceI
Evaluation 1 1 Projection I I Monitoring I \

Figure 1 -- Purposes of Performance Measurement

Selection evaluation involves the comparison of existing systems. The most

frequent application of selection evaluation techniques is for comparison
of computer systems to determine which system performs a given function

most efficiently or whether a given system configuration can support a

Georgia Institute of Technology Remote Terminal Eknulator

Page 2 Introduction Chapter 1

particular application. Selection evaluation is also applicable when

measuring the impact of different hardware or software on an existing

system. For example, selection evaluation is useful in determining whether
the addition of a load balancing algorithm improves interactive response

time. Similarly, selection evaluation can answer the question "Did the
last change to the operating system improve performance?" In all cases,

the detining feature of a selection evaluation is that the systems to be

compared must exist and must be available for testing.
Performance projection techniques are often applicable during the

design of new hardware and software systems. These techniques attempt to
predict the performance of new hardware and software designs prior to

implementation. 7hey can also be used to predict the performance of a
system under a new workload or with a different hardware configuration.

Performance projection techniques can often be applied to the same problems

as selection evaluation techniques. However, the distinguishing feature is

that it be not practical to actually test the systems under consideration:

it may be too expensive to test the actual configuration, the configuration

may not be available, or the system may not exist at all.
Performance monitoring techniques are applied in an attempt to

understand the behavior of existing systems towards the goals of improving

efficiency and service to users. It usually involves observing an existing
system under normal operating conditions. Quantities measured with per-

formance monitoring techniques are usually very dependent on the system

measured (e. g., number of page faults, number of times the dispatcher is
entered, etc.). For this reason, performance monitoring techniques are

usually applicable only for the comparison of similarly structured existing

systems. For instance, it is difficult to compare the performance of
systems that use dtfferent disk block sizes by comparing the number of

physicai disk reads and writes.
In the ICS FDPS testbed facility, performance evaluation will be

necessary for all three purposes. One need is for a performance

measurement tool is in the area of selection evaluation. It is necessary
to test prototype systems and compare the results with the results predic-

ted by performance projection techniques, as well as with results obtained
by testing other systems. The tool must be able to empirically measure the

Georgia Institute of Technology Remote Terminal Emulator

Chapter 1 Introduction Page 3

performance of existing software and hardware configurations, and must be
able to provide comparable measurements on similar configurations.

1.2 .Zubnlwa I=2am ~I

A number of different performance measurement techniques can be
applied for the purposes mentioned in the previoUs section. Figure 2 shows
these techniques.

I Performance Measurement Techniques I

I I

Techniques I I Techniques I

Mode ecnqelin fo PefrmneMeasur ement

t I

IIII I I I
I II I I I I I

I Simulation I d onycmerin useful rench- i an
I II I Times Iu IPrograo s n Ifmar tL.ng II .. I I .L _ . -L ,I . .

seeto eauto, th fo - llowing m dicsso of performanc meaureen

I I I I I

t Analyticai I I Instruction s I Monitoring i
T Techniquesses o Me s r I Techniqu qesz _ _ . . I [. ..

Figure 2 --- Techniques for Performance Measurement

Most of these techniques can be applied fo" all purposes of performance

measuremlent, but some proviie only marginally useful results. Since an
FDPS testbed performance measurement tool is needed for the purpose of

selection evaluation, the folloiing discussion of performance measurement

techniques is confined to those applicable to selection evaluation.

There are two classes of performance evaluation techniques that can

be used for selection evaluation: modeling techniques and measurement

techniques [Ferrari 78J. Modeling techniques Involve building a

Georgia Institute of Technology Remote Terminal Emulator

Page 4 Introduction Chapter 1

representation of the system to be evaluated and then testing that model.

Uthough most useful in performance projection, modeling techniques can

also be used for selection evaluation. A significant problem with all

modeiing techniques is determining how well the model reflects the system

it models.

Vlalidation [of a model] is often difftcult, a.. soretimes
i•,posai)le. It may be based on previous thaoretical or simula-
tion results, but if the modeled system exists, the ultimate
foundations of a validation model must be empirical. ...
Thus, in a sense, measurement is the most important evaluation
technique since it is needed also by the other techniques.[errari 18]

Measurement techniques involve actually measuring the behavior of an

existing system and thus are applicable only when the performance of a

system can actually be determined. Several of the measurement techniques

(instruction timings, instruction mixes, and kernel programs) merely make

comparisons ot hardware parameters such as memory cycle time, addition

times, etc. These techniques are generally useful only as a supplement to

more powerful techniques when used to compare hardware configurations and

are inadequate when used to compare software systems (Lunas 71).

Hardware and software monitoring techniques, which usually involve

the recording of such things as the number of page faults, number of cache

misses, etc., provide a great deal of information about the performance of

a particular system. But since the parameters that can be measured are

usually very specific to a particular implementation, comparisons between

systems with different internal structures are usually difficult to

interpret.

The remaining measurement techniques, generally called benchmark

techniques [Svobodova 76), involve actually running a system using a set of

real or carefully contrived input and measuring the response of the system.

Since the benchmark techniques treat the system under test as a "black
box", measuring only stimuli and responses, they are immune to many of the

problems of other measurement, techniques. In g-ccral, the only significant

difficulties of benchmark techniques are in the determination of the input

to the system under test and in the analysis of the output of the system

under test.

Georgia Institute of Technology Remote Terminal Emulator

I i'•- : g I

Chapter 1 Introduction Page 5

To support the FDPS testbed, the performance measurement must be

capable of consisteotly applying arbitrary benchmarks to the the machines

that are or will be a part of the testbed. It must also allow arbitrary

analysis of the responses of the testbed equipment. This decision permits

a generally useful tool for the testbed, w&ULle not enuumcririg or presup-

posing knowit"ge of the research issues of either the FDPS project or of

benchmark techniques.

1.3 kntuWZ

Performing a benchmark on a system first involves devising a

workload to apply to the system under test. Svobodova defines the workload

of a system as "the total of resource demands generated by the user corn-

munity" (Svobodova 76]. Seen from the benchmark point of view, devising a
workload is simply defining the set of inputs to be presented to the system

under test. It is not a function of a remote terminal emulator to devise

the workload to be used as the benchmark. The user must be responsible for

devising a representative workload based on the system to be tested - the

performance measurement tool need only be able to apply an arbitrary work-

load.

Once a set of benchmark jobs have been chosen and tested, the work-

load can be applied to a particular system configuration. A batch system

may be tested by simply placing each job deck in the card reader at a

preappointed time, and noting the time needed for the completion of all of

the jobs. Testing a slightly different configuration presents no

additional problems. The workload in this case is repeatable; it can be

run several times on one system and barring malfunctions, one can expect

similar results.

Testing of an interactive system is much more difficult. Since an

interactive workload is generated by users entering data at terminals, it

is very difficult to generate a repeatable workload without additional com-

puter assistance. In general it is inot possible to get a dozen or more

people to type in commands in exactly the same order and "think" for exac-

tly the same time for many consecutive test sessions. To obtain comparable

results from several test sessions, it is necessary to have a means to
emulates the actions of the interactive users and to repeat the sane work-

Georgia Institute of Technology Remote Terminal Emulator

Page 6 Introduction Chapter 1

load many times without tiring.
A Remote Terminal Emulator (hereafter referred to as an RTE) is just

such a device. Its primary function is to emulate the load placed on a

syst,:n by remote sources attached through communicatic- .1 in'zs, iuch as
terminals, sensors, and process controllers. RTEs are quite useful in per-

formance measurement and evaluation, as well as for emulating devices in

multi-dropped line protocols, monitoring communication line activity, and

providing a host system for the testing of communications line protocols.

When used for performance evaluation, the RTE must produce a

predefined workload while recording data about the responses of the system

under test. To be capable of generating an interactive workload as well as

a batch workload, an RTE must be able to accurately emulate people typing

at interactive terminals. An interactive session, as opposed to a batch

job, has three additional characteristics: (1) future input may be
determined by current output, (2) there may be pauses before input messages
corresponding to user "think time", and (3) there are pauses between input

characters corresponding to user typing rate [Svobodova 76].

For the needs of the FDPS testbed, a remote terminal emulator is

best choice for the performance measurement tool. As a minimum, the RTE

must be able to generate interactive workloads to drive the existing hard-

ware and software in the testbed. Preferably the RTE should be a general

tool for performing benchmarks; it should be able to emulate any interac-

tive device, either computer system or terminal, that hardware

considerations allow it to replace.

1.4 OhrX

Most major computer vendors support RTEs for measuring the per-

formance of their systems. RTEs are invaluable for helping to tune com-

puter systems to squeeze the most performance per dollar, as well as for

helping to convince prospective customers that a particular configuration

will indeed do what the specifications says it will. Other groups, such as

the U. S. Air Force and Tymshare also use RTEs for assistance in tuning and

selecting computer systems [Watkins 77). Most existing RTEs run either on

inexpensive minicomputers (Air Force/MiITRE DVM) or on the same family of

systems they are built to test (Burroughs System/DCEM, IBM DB/DC Driver,

Georgia Institute of Technology Remote Terminal Emulator

Chapter 1 Introduction Page 7

Univac CS1100). Some performance measurement tools run in a front end or

peripheral processor attached to the system to be tested (Honeywell Datus,

are not usuP.ily classified as such:

There are implementations of workload drivers which reside
either within the SUT [system under test] or in its corn-
munications front-end. . . . SUT resource dependency excludes
these specific implementations from the classification RTE. In
the interests of control and repeatability of testing, and of
creating as near a duplication as possible of a specified work-
load and its effect on the SUT, the driver must be external to
and independent of the SUT for the device to be an RTE [Watkins
77].

Most existing remote terminal emulators have a structure similar to

that shown in Figure 3. Scripts, either in original or compiled form are

accepted by the emulator and used to generate messages to be sent to the

system under test. The responses of the system under test (either the

entire response or the critical portions such as the first and last charac-

ters) are either ti-ne-stamped and logged in the session log files or are

immediately reduced into statistics that are being collected. Depending on

the implementation, the RTE may or may not examine responses from the

system under test to modify its future actions. At the end of the- test

session, the desired measurements can be obtained from the RTE or by

analyzing the session log files.

Georgia Insti tute of Technology Remote Terminal Emulator

I,./••:•••

Page 8 Introduction Chapter 1

____....__---->1 Remote Terminal

I I--- >I Emulator I
I Scripts !--I--.--->I I

/ I I I

I--I I

/ I Session
I I Log Files

V System Under I

Test

I A

Figure 3 -- Remote Terminal Emulation

ii441

G o g

i

I;

LGeorgia Institute of Technology Remote Tenninrj. E•ulator

Chapter 2 The RTE Project Page 9

CHAPTD 2

The RTE Project

201 act±JCAA

Fran the preceding discussion of the motivations for the RTE
project, two design objectives arise: the RTE should produce realistic

interactive workloads and the RTE should remain an effective tool for
V several years. These objectives, although succinct, are not absolute

requirements. It is necessary, as in most software projects, to compromise
some of the objectives for practical reasons. For instance, extremely
accurate time interval measurement cannot be provided without hardware
modification. Requiring special hardwa.re reduces the long-term usefuless

of the RYE, but increasing its timing accuracy allows the generated work-
load to be more representative.

Two requirements are necessary to ensure the RTE' s ability to
generate realistic workloads: the RTE must be able to accurately emulate

remote devices, and the workload presented by the RTE must be repeatable

[Watkins 77). These requirements are based on the primary motivation forIV.the project: some method must be provided to accurately simulate real
int.eractive users.

To be able to accurately emulate remote devices, the RTE must be
capable of three things: it must be able to alter its behavior based on

data it receives from the system under test, it must be able to accurately I
control delays between characters, and it must be able to accurately
control delays between a response from the system under test and the next
message from the RTE. These requirements follow directly from the defining
characteristics of interactive workloads mentioned in the last chapter.

The necessity that the RTE produce a repeatable workload is a direct
revult of the purposes I cGr which the RUt~ will be used. Since it will be
used to compare different hardware and software configurations, it must be

capable of generating the same workload time and again. This is not to
say,, however, that given the task of generating the sane workload, the RTE

will generate identical output. If the behavior of the system under test
differs, of necessity, response of the RTE will differ. What must be
expected is that "each time the RYE presents an activity to the SUT [system

Georgia Institute of Technology Remote Terminal Emnulator

Page 10 The RTE Project Chapter 2

under test] the observed performance differences are due to the SUT and not

to the RTE" [Watkins 77].

The roquirementn to ensut-. the. ong-tc~m effectiveness of h,' RTE

are perhaps more obvious, since they apply to most software systems as

well. These include ease of use, ease of maintenance, and flexibility. It

is clear that implementation of the RTE will have been wasted if use of the

RTE requires as much effort and knowledge as is required to implement a

special program to be used once to perform the same actions.

The RTE will not be useful if it is not easy to maintain (e. g., it

requires a non-standard environment with its own special operating system

and dozens of control files). Again, it will be pointless to keep the RTE

if it requires more effort to mnaintain than it does to implement the

special purpose programs the RTE replaces.

Finally, although the RTE must be easy to use, it must be flexible
enough to perform complex and varied emulation tasks. A M restrirc-

tions must be avoided that prevent the RTE from performing such tasks as

simulating interactive devices other than user terminals, generating work-

loads for machines other than those in the FDPS testbed, posing as one or

several terminal& on a muLti-dropped communications line, passively

monitoring activity on a communicationr line, or emulating a host system

for testing communications line protocols. The RTE must also be efficient

enough to provide a number cf concurrent sessions. Otherwise, the RTE will

be of little use in monitori.ng even the existing systems.

2.2 bamsian iAta

In considerirng the objectives for the RTE and the hardware on

which it is to be implemented, several alternatives for the design of the

RTE are possible. Some of these alternatives can be immediately eliminated

because they cannot possibly meet the requirements established for the

implementation; in other cases, a choice must be made for less concrete

reasons. In these cases, the choice has been made in favor of the simplest

scheme, so that if it is found to be inadequate, it can be remedied at the

least expense. The rest of this section describes the major design

decisions and their rationale.

Georgia Institute of Technology Remote Terminal Emulator

Chapter 2 The RTE Project Page 11

The first choice in selecting an implementation plan is the choice

of operating systems. Here there are just three alternatives: the Prime-

supplied sLnle-usc.r operdtifig system (Primos II), the Prime-supplied

multi-user operating system (Primos), and no operating system at all.

After exderience with design of a stand-along program for the Prime "stems

during a course taught in the winter quarter of 1981, it is obvious that

totally abandoning the vendor-supplied operating systams would be an

extremely expensive and time-consuming move, probably tripling the

magnitude of the project. Therefore the only reasonable alternative is to

select one of the vendor-supplied operating systems.

It is clear that the RTE must be able to support multiple concurrent

interactive sessions, so some concurrency will be required in the RTE. The

multi-user operating system supports multiple concurrent processes and

virtual memory, while the single-user operating system does not. There are

only two possible advantages in using the single-user operating system,

assuming multiple processes are simulated to provide the recessary

concurrency: code can be shared between processes, and process switching

time can be minimized. These advantages are not significant though, since

the multi-user operating system allows reentrant code to be shared between

processes and, more Importantly, makes use of the microcoded process

exchange mechanism provided in the Prime systems, providing very fast, if

not the fastest possible, process switching.

Since use of the single-user operating system provides no obvious

benefits and because it would noticably complicate the project by requiring

the implementation of process scheduling and concurrency primitives, use of

the multi-user operating system is probably the best choice.
Choice of an implementation language for the RTE is suprisingly sim-

ple. At the time of implementation, only a few languages were available on

the Prime systems: Cobol, Basic, Fortran, Ratfor, and assembly language.

Assembly language might be the logical choice if ease of programming and

maintenance was not considered. However, the assembly language for the

Prime systems is quite ccmplex and there are few people who program in it

effectively. Cobol and Basic are probably not well suited for this type of

programming; in addition, the Prime implementation of these languages is

very slow. The choice then falls to either Fortran or Ratfor; since Ratfor

Georgia Institute of Technology Remote Terminal Emulator

S S1

Page 12 The RTE Project Chapter 2

is a superset of Fortran and provides many features for writing easy-to-

ur,.ri'6and programs, it wa3 the obvious choice.

Another area for choiue is the structure of the RTE itsel:. There

are three different structures that can be used for the HTE: the RTE can

directly interpret a hum3n-readable scrip3 ' during the emulation session,

the RTE can compile a human-readable script into a machine language

program, or the RTE can compile the human-readable script into an easy-to-

interpret intermediate form for execution. The principle difficulty with

the first choice is that it takes a great deal of time to parse a free-form

program. Since the number of simultaneous interactive sessions that can be

run may well be determined by CPU time requirements, it seems fool ish to

place the parsing load in the most time-critical area when better alter-

natives are available.

The second approach, compiling a script into machine language,

solves the objection to the first approach by allowing a complex script

language while allowing quick execution. It does, however, present two

other problems. First, it does not allow the sharing of code between

scripts (except between identical scripts), since each script would be a

separate object program. Second, it would significantly complicate the

implementation to directly generate machine code, and generating assembly

language or Fortran would inconvenience users by requiring a great deal of

time for compiling and linking the script programs.

The last approach, compiling scripts into an intermediate form,

minimizes the deficiencies in both of the previous two approaches. It

permits a complex source language, while permitting efficient

interpretation. It also allows the interpreter code to be shared among the

concurrent processes and is much easier to implement and maintain. It is

this approach that was used.

A difficult area to address is the analysis to be done on the output

from an RTE test session. Little is known about what information will be

required in the analysis of a test session, since many of the projects that

might use the RTE have not been devised. Because of this, it is necessary

to defer the decisions on the exact kinds of analysis that can be per-

formed. Fortunately, there is an approach which allows this quite simply.

The RTE time-stamps and records all input and output from interactive ses-

Go
Georgia Institute of Technology Remote Terminal EmulatorI

I jI

Chapter 2 The RU£ Project Page 13

sions during emulation. Insructions wre written in the script to place

various markers in this log along with t" e es3ion transcription. Then,

after the enulation seZ31on is complete, these logs can be arhlyzed. Since

events of nterest to the investigator have been tagged by markers in the
log, time intervals can be easily computed, and other information can be

derived as needed. This approach has the benefits that the analysis code

is not built into the RTE and can thus be changed without danger to the
integrity of the RTE code, and since a complete record of the emulation
session is made, analyses may be run and rerun on the same session without

the need of repeating the expensive emulatIon session.

2.3 BARn=ti" am

The RTE is implemented on the FDPS testbed and runs under the
Primos operating system on Prime 400 and larger systems with at least 1
megabyte of main memory. The code is written in a local dialect of Ratfor
[Kernighan 76, Akin 80] which Is part of the Georgia Tech Software Tools
Subsystem [Akin 81].

As discussed above, RTE contains three components: the preproces-

sor, the interpreter, and tie analyzer. A diagram of the structure of the

RTE appears in Figure 4.

Go

I
1Georgia Irstitute of Technology Remote Terminal Emnulator 1

'I___________ •

Page l4 The RTE Project Chapter 2

_. ... - I I->I Script I--...- L I I
I I I--I->I Preprocessor --- I I I I
I Script I-I.L->I ->I Script I IJ.
I Source I__. J I Object I-.J

S.I I> II I 1I

II-I->I Interpreters I--I
script I-1--.L->I I->I Session I L.L1 Object L.L _1 .. I I Logs L

+ III

II

I SystemSUnder Test

l >I Session I I Time

I I I--I->l Analyzer I->I Intervals I
I Session --I-_I->I I I
I Logs L.... I_

Figure 4 -- Structure of the RTE Implementation

Table 1 contains a brief description of how the RTE operates:

Table 1 - Operation of the RTE

(1) The user first determines the scripts to be used. In addition to
the text of the messages to be sent to the system under test, the
scripts also contain infrmiation such as actions required for
initialization, conditional branches based on response- from the
system imder test, and the method of computing character and mes-
sage delay times.

(2) The user codes the scripts in the script source language and
enters them with the text editor.

Georgia Institute of Technology Remote Terminal Emulator

I

Chapter 2 The RTE Project Page 15

(3) The scripts are translated by the script preprocessor into the
binary script object language.

(4) The user, with the assistance of the Software Tools Subsystem,
creates a command procedure to initiate all instances of the
interpreter. The user also specifies the script object program
for each session, the method of access to the system under test,
and the file to be used for logging session activity.

(5) The user initiates the command procedure. The initerpreter
processes are spawned, perform any necessary initialization and
then wait for the signal to begin the emulation session.

(6) The user signals the interpreter processes to begin the test por-

tion of their scripts.

(7) After the interpreter processes terminate, the user may then run
the analysis programs using the session log files to obtain the
desired measurments.

The implementation of the three components of the RTE are discussed

below. Exact specifications and operating instructions for these com-

ponents are described in the User's Manual, included as an appendix. Also

described in detail in the User's Manual are the script source language,

the script object language, the session log file format, and the analyzer

output format.

2.3.1 Ma Za=.DJa • aaioa

wrttn The script preprocessor is responsible for converting user-

written script source language progrums into script object language

programs for interpretation. The script source language is a simple line-

independent language in which each statement begins with a keyword. Pars-

ing is done with a simple recursive descent parser generated using the

'stacc' parser generator [Akin 81]. The preprocessor makes a single pass

over the input language while generating two output streams. The first

output stream contains directives for the allocation of all variables and
constant data items. The second stream contains the code generated for

each procedural statement. After the input has been completely processed,

the preprocessor makes another pass over the procedure stream to backpatch

the forward-chained branch addresses. Then the two streams are

concatenated and copied into the script object file.

Georgia Institute of Technology Remote Terminal Emulator

|I

Psge 16 The RTE Projeut Chaptdr 2

2.3.2 Mat Jvt

The interpreter takes a single acr1 pt object program and

interprets it :.o emulate a single interactiVE session. Multiple sessions

are emulated by running multiple copies of the interpreter simultaneously.

When the interpreter is first executed, it reads the data allocetion

information from the object program and uses this information to initialize

its data areas. It then begins to interpret the procedural code. In most

instances, it performs any necessary initializations both locally and on

the system under test (e. g., logging in, copy program and data files into

a work area, etc.) By convention, the script directs the interpreter to

wait for a signal from the user before beginning the test session code.
When it receives the signal to continue (Usually all sessions are signalled
simultaneously), it begins to execute the test portion of the script

program until that program directs it to terminate. Meanwhile, every input

and output to the interpreter is time-stamped and Jogged for the analyzer.

If the script program detects an error, or the interpreter receives no

response from the system under test for a specified interval, it displays a

message indicating the problem.

Currently, the interpreter has three ways of accessing a remote

system. The first is through direct connection of an asynchronous line.

This allcws the interpreter to communicate with any device that supports an

asynchronous RS-232-C interface. The second option allows the interpreter

to obtain a virtual circuit to the system under test and initiate a

terminal session through the remote login server of Primenet, thus allowing

easy access to any Prime CPU connected via a ring network or other com-

munications link. The third option causes the interpreter to read and

write to its connected terminal, prov. ding a way of exercising the

interpreter and testing scripts without connecting to another computer
(i.e. the user pretends that he is the remote system and types its inten-

ded responses). The interpreter is written so that all session establish-

ment and input-output is performed in a single module so that as other

access methods are needed, they can be easily added without concern for the

structure of the rest of the interpreter.

Georgia Institute of Technology Remote Terminal Ebulator

I I -

Chapter 2 The RTE Project Page 17

2.3.3 Ma 2A *MLVM

There are two kinds of analysis that can be performed on the

output from an emulation session: session trace analysis arnd time interval

analysis. The session trace analysis simply displays all input and output
during the session in a readable form, along with the time intervals
between each event. This type of analysis lends itself particularly well

to verifying the actions performned by each script.

Time interval analysis displays the elapsed time between any two

events occuring during emulation. Events are marked by "log" statements
placed in the script by the user. For instance, to measure the time

required to compile, link, and execute a Fortran program, the user would
place a "log" statement f r an event (perhaps event 1) just before the

statement sending the "compile" command, and would place another "log"
statement (perhaps event 2) just after the statement receiving the message

indicating that execution is complete. The analysis program is then told
to display the elapsed time between consecutive occurrences of event 1 and

event 2.

All of the time interval analyses produce nothing more than a list

of time intervals between the events that they mea3ure. For instance, the
measurement of the interval between completion of an RTE output and the

receipt of the reponse message would result in the display of many time
intervals (one for each output/response pair that occured), while the

measurement of session time would result in the display of a single inter-

val. These lists of raw time intervals may be easily concatenated and pas-

sed to any of several statistical packages, such as 'stats' [Akin 81] or

SPSS [ref], to perform the desired statistical calculations.

Georgia Institute of Technology Remote Terminal Ekoulator

____.__ .'

Page 18 Conclusion Chapter 3

CHAPTER 3

Conclusion -
3.1 aug

The requirements set forth for the RTE in Chapter II are sum.-
marized in Table 2:I Table 2 -Requirements for an RTE

I. The RTE must be able to generate a useful workload
A. accurately emulate remote devices

1. alter its behavior based on data received
2. accurately control delays between characters
3. accurately control delays between messages

B. present a statistically repeatable workload

A. easy to use
B. easy to maintain
C. flexible

The ensuing paragraphs discuss how well the RTE implementation meets each
these requirements.

In choosing among the requirements, it is most important that the

RTE be able to generate useful workloads. After examining the capabilities

¶ of the RTE implementation, it is clear that the RTE can accurately emulate
-iremote devices: it can choose its execution path based on output fron the

system under test, it can be instructed to send a character after waiting

an arbitrary time, and it can be instructed to wait an arbitrary period of

time after recognizing a message from the system under test before traris-

mittin', the next input.

The only point of question :s whether the implementation can

accurately time the waiting periods and send the output characters at the

time specified by the user. Since the timer resolution of the Prime CPU is

3.030 milliseconds, it is clear that one cannot expect the RTE to exceed

this accuracy when depending on the system timer. In addition, character

buffering and process scheduling mechanisms in the operating system have an

incalculable, although substantial, effect on the accuracy of the timing.

Georgia Institute of Technology Remote Terminal Emnulator

*Chapter 3 Conclusion Page 19

Wheo~.n an interpreter process is awakened by the tmer, several events

mus ocurbefore it can send a character to the system under test. These
evets reoutlined in table 3 below.

Table 3 - Character Transmission Events

Interpreter process is notified. Timer resolution may introduce
a delay error of up to 3 ins. in the awakening of a process

scheduled to send a character.

may e itrouce, dpeningon the operating systemIThe character is placed in the output buffer. Before reaching
this point, the interpreter may be delayed even further by
an unanticipated, asynchronous interrupt or it may be queued
for having used up its current time slice.

The character is sent. Several milliseconds (unpredictable and
uncontrollable) may elapse before the asynchronous line
control hardware finds and sends the character.

Each of these time-dependent events delays the transmission of each charac--
ter contributing to the timing error an increment ranging from a few mil-

liseconds to several seconds.
The RTE attempts to avoid the cumulative error problem by sending

characters at times specified relative to the beginning of the message,
-- rather than specified as an interval between characters. This approach

reduces the timing error between characters, but does not affect the timing
error between messages.

To address the question as to whether the RTE can generate

repeatable workloads, one must recognize that, although the behavior of

each script should be deterministic, the overall result of a test session
is non-deterministic. The probability distributions used for determining

inter-character delays in the scripts are calculated by the script

preprocessor and the exact values applicable to each specific delay are

entered into the script object program by the preprocessor. Then the

interpretation (i. e., execution) of a script should be completely

deterministic. However, both the system under test and the RTE host system

' f behave non-deterministicly during the test session.

LGeorgia Institute of Technology Remote Terminal Emulator

Page 20 Conclusion Chapter 3

One cannot (and should not) control the non-deterministic behavior

of the system under test. As a consequence, it introduces a degree of ran-

domness into the test results. The system under test may respond faster or

slower to a given message and cause the corresponding interpreter process

to execute faster or slower than its siblings.

The RTE host system, also a multiprogramming system, introduces

another degree of randomness. As outlined in Table 3, there are several

non-deterministic delays introduced on the timing of the output of each

character. Although the variance of some of these delays can be controlled

by manipulation of the operating system configuration parameters, most can-

not be controlled without modification to the operating system algorithms.

This is the penalty paid for the convenience of using the multi-user

operating system in the RTE host.

must answer the question about the accuracy of the timing. As discussed

above, the script preprocessor calculates alprobability ditiuinsoA

the script object program is deterministic. Since the interpreter can use

the same script object program many times, only timing considerations are

in doubt.

There is a significant difficulty in determining the imnpact of the

timing inaccuracies since the only available measurement tool is another

Prime CPU running the same operating system. Without the use of special

hardware or software, the timing accuracy of the RTE can only be roughly

estimated. Measurements made by executing a single script and recording

the time each character was received by another system indicate that the.

average timing delay error for each character was less than 23 milliseconds

* ~per character with a standard deviation of 28. How.ever, when the number of"

* ~simultaneous sessions were increased to 20, the average delay error was

about 100 milliseconds per character with a standard deviation of 130 whenj

measured over a 5 minute period.

Because the behavior of the system under test is non-deterministic,

the result of a single test session is just a sample of a random variable.

Regardless of the behavior of the RTE, the measurements are neither exact

nor perfectly repeatable, except in the stochastic sense. Because of this,

much of the inaccuracy and non-deterministic behavior of the RTE can be

GogaInstitute of Technology Remote Terminal Em~ulator

Chapter 3 Conclusion Page 21

ignored when emulating terminal users allowing the results to be used with
a reasonable degree of confidence.

However, these measurements and arguments do not rigorously verify
the timing accuracy of the RTE. In addition, changes that further affect

timing accuracy may occur with revisions to the operating system or hard-
ware. For any application that depends greatly on the accuracy of timing,
the user should verify the timing accuracy using the necessary special
purpose hardware.

In evaluating the RTE implementation with respect to the

requirements for long-term effectiveness, it is very difficult to make a
quantitative judgement. Since perfection in meeting these requirements is

probably not attainable, it is more useful to view them as design goals and
examine the length to which these goals were persued in the RTE

implementation.
Sever ,l features of the RTE should make it easier to use than com-

parable systems. First, the script preprocessor provides several commnon
probability density functions for specifying character delays. Although
some users may wish to specify the delay for each character, it is probably
sufficient for most users to supply the parameters of a probability densi~ty
function anid allow the preprocessor to compulte the delays.

Ease of use was also a principal. considerations in the design of the
script source language. The language allows column anid line independent
input and accepts a simple, English-like syntax with each statement begin-

ning with a keyword. Source file inclusion and macro facilities are also
present to minimize the effort to create the number of slightly different

scripts necessary for a complex emulation session.
The fact that scripts are processed before the emulation session is

begun produces another benefit: Any syntatic errors made in the script are
diagnosed and can be corrected before the emulation session begins. This
is in contrast to not encountering a syntax error until the interpreter
processes the statement, perhaps not until near the end of a long emulation
session.

Another of the features that make the RTE easy to use (at least for
simple emulation sessions) is the access to the remote login server in
Primenet. A user may specify that the RTE make virtual connections to the

L-Georgia Institute of' Technology Remote Terminal Eknulator

Page 22 Conclusion Chapter 3

system under test through Primenet, rather than require hard wire connec-

tions from asynchronous port to asynchronous port. Use of the Primenet
remote login server placen a different overhead on the system under test

and so may disturb careful mea.aurements. However, the disturbance is

usually limited to less th. n percent of the CPU capacity, so this form

of connection provides a very convenient vehicle for gross performance

measurements.

To be generally useful as a performance measurement tool in the FDPS

testbed, the RTE must not be tied into making measurements of particular

hardware and software configurations. It should be flexible enough "o be

able to emulate terminals attached not only to systems already part of the

FDPS testbed, but to other systems, both present and future. The RTE was
designed to avoid dependencies on the system to be tested and to allow easy

repair of dependencies that are discovered. For instance, although the

interpreter expects ASCII character input, the input and output routines

are isolated and extensible so that new hardware or software interfaces can

be acconodated with little difficulty. Similarly, the session establish-

ment procedures are isolated so that new session protocols can be added.

The RTE avoids dependence on particular system prompting conventions

by supporting generalized text patterns and not insisting on fixed order of
inputs and outputs. The pattern matching capability, also borrowed from

(Kernighan 76], allows the matching of arbitrary prompts by simply writing
a regular expression. Although, these particular routines are character

oriented, a new set of routines may be easily substituted. Since the
scripts allow an arbitrary flow of control, it is not necessary that the
system under test prompt for each input, or even give the same prompt. The
script can be programmed to recognize particular pronpts from the system

under test and choose its response accordingly.

Finally, ease of maintenance is a minimal requirement of any

software system. In addition to adherance to good programming techniques,

such as those suggested in [Kernighan 76], several considerations have been

given to enhancing the maintainability and extensibility of the RTE. For
instance, functions such as the statistical analysis of the time intervals

produced by the analysis programs is left to existing packages, such as

SPSS and 'stats'. Many of the other functions, such as setting up an

L Georgia Institute of Technology Remote Terminal Dnulator

I

Chapter 3 Conclusion Page 23

emulation session, have been left under the domain of the Software Tools
Subsystem [Akin 81 J. These systems are specialized to handle these
particular functions; thus the RTE can consist of significantly less stand-
alone code.

To further reduce the need for maintenance, the RY7E implementation
does not depend on local modifications to the operating system. It uses
only documented, fully vendor-supported features. This allows the RTE to
be used under the standard operating system releases; thus it is not neces-
sary that a separate, specially modified operating system be maintained.

In the case that the existing script language is not powerful or
fast enough to support an application, new capabilities are easily added
with new statements to the script source language and new operators to the
script object language. Instructions on how to accomplish this are part of
the User's Guide that appears in the appendix.

Several utilities for displaying the script object language and the

interpreter session logs are available for debugging both scripts and the
RTE itself. These utilities understand these data structures and can print
them in an easily readable form. Instructions for their use are also
included in the User's Guide in the appendix.

3.2 H d~.n

There are a number of areas left to be addressed in the area of

performance measurement tools for the FDPS testbed. Most important is
research into how to effectively use the RTE. This thesis makes no attempt
to suggest the content of scripts or the methods of analyzing test session
results. These areas must be investigated by the user so that meaningful
results are actually obtained by using the RTE.

Along the lines of more tractable projects, there are several areas
in which the RIE can be improved. First, even though the script language
is easy to use, it still requires a fair amount of work to create a script

-at least the sane amount required to write a program of comparable com-
plexity. A great help would be a program that spies on real users and
generate.s scripts that perform exactly the sawe activities. At least then,
a worklc~ad could be justified as "real", even if there is insufficient
research to justify it as "representative".

Georgia Institute of Technology Remote Terminal Emnulator

Page 24 Conclusion Chapter 3

Several parts of the RTE can also be improved. The interpreter must
recognize that a significant time has passed so that it can report to the

user that it has received no response. Currently, the interpreter mustI
poll its input so that it is not blocked forever waiting on a character. A
recent addition to the operating system allows a process to be signaled
after a specified period of time, regardless of whether it is blocked wait-
ing for input. Use of this feature would reduce the time necessary for
busy waiting and perhaps allow more sessions to be run concurrently without

suffering inaccuracy in timing.
The Software Tools pattern matching routines used for identifying

responses from the system under test have two problems that should be
apprachd: heyare not particularly fast when matching patterns with

closresand they are inherently line oriented. Replacing them by a more
sopisicaedalgorithm such as the DFA pattern matching algorithm

described in [Aho 77] could significantly reduce processing requirements
for complex patterns and remove any bias towards line separators.

Georgia Institute of Technology Remote Terminal Emnulator

Page 25

ACKNOWLEDGE.ENTS

I wish to thank my advisor, Dr. Philip H. Enslow, Jr., and the members of

my committee, Drs. Richard J. LeBlanc and Nancy D. Griffeth, for their

guidance and encouragement. I am especially grateful to Jeannette Myers

for her gracious assistance in writing the programs and revising the

thesis.

Io1

Georgia Institute of Technology Remote Terminal Emulator

_ _ 4J° __ 4-

Page 26

BIBLIOGRAPHY

Abrams 76 Abrams, Marshall D. and Watkins, Shirley W., SufarvjL

Fidig Tprmn~~u~ Im a i~nal Fhultio
S C of i r a i n A g u n s D m l t n T @ ! A n r n s s n W a r k n a d ,

General Services Administration, CS 77-4, November 1976.

Abrams 78 Abrans, Marshall D., "Guidelines for the Measurement of
Interactive Ccmputer Service Response Time and Turnaround
Time," F• • k a tn d ..9tandarAds
5U, National Technical Information Service, August 1978.

Aho 77 Aho, Alfred V. and Ullman, Jeffrey D., £r±p±n].gagL o
flgjgan, Addiion Wesley, 1977.

Akin 81 Akin, T. Allen, Flinn, Perry B., and Forsyth, Daniel H.,
Q ±ajm ofw r TZIs RisstaX Be*aa M"anual, School
of information and Computer Science, Georgia Institute of
Technolgy, GIT-ICS-80/03, 1980.

Akin 80 Akin, T. Allen, Flinn, Perry B., and Forsyth, Daniel H.,
r i T R Toos Referenne Manual, School
of Information and Computer Science, Georgia Institute of
Technology, 1981.

DeMeis 69 DeMeis, W. M., Weizer, N., "Measurement and Analysis of a
Demand Paging Time-Sharing System," PJrcw, -f heng
AM0 .atifn Confalanne, 1969, pp. 201-216.

Ferrari 70 Ferrari, Domenico, "Architecture and Instrumentation in a
Modular Interactive System," fU1At, vol. 13, no. 8, August
1970, pp. 495-500.

Ferrari 72 Ferrari, Domenico, "Workload Characterization and Selection in
Computer Performance Measurement", Lp , July/August 1972,
pp. 18-24.

Ferrari 78 Ferrari, Domenico Q U %LA,Prentice-Hall, 197A.

Freeman 75 Freeman, Peter, R Systems ncin • , Science Research
Associates, 1975.

Karush 69 Karush, Arnold D., Two Approaches for Measuring the Per-
formance of Time-Sharing Systems," Progg. dng AT= PR
2ri n ting ims.ems Princiniea, Princeton
University, October 1969, pp. 159-166.

Kernighan 76 Kernighan, Brian W. and Plauger, P. J., Software Toos,
Addison Wesley, 1976.

Lucas 71 Lucas, Henry C., "Performance Evaluation and Monitoring",
Comnutn SuryeX, vol. 3, no. 3, 1971, pp. 79-91.

Nemeth 71 Nemeth, Alan G. and Rovner, Paul D., "User Program Measurement
in a Time-Shared Environment," • uni ations at the AO, Vol.

Georgia Institute of Technology Remote Terminal Emulator

a,.

Page 27

14, No. 10, October 1971, pp. 661-A66.

Nie 75 Nie, Norman H., et al., ZA U i Lm U thae
Zgfl=, McGraw-Hill, 2nd ed., 1975.

Rodriguez 77 Rodriguez, Humberto, Jr., 1ku1 n fl3j Chl=AIiStlS £n
lba M AX•tM, Laboratory for Computer Science, Mas-

sachusetts Institute of Technology, MIT/LCS/TM-89, May 1977.

Rodriguez-Rosell 72 Rodriguez-Rosell, Juan and Dupuy, Jean-Pierre, "The
Evaluation of a Time-Sharing Page Demand System," AEI±R
P afth Z=9 1972, pp. 759-765.

Salzer 70 Salzer, Jerome H. and Gintell, John W., "The Instrumentation

of Multics," an unU&Le lnLt AG9, Vol. 13, No. 8, August
1970, pp. 495-500.

Scherr 66 Scherr, Allan S., "Time-Sharing Measurement," a, Vol.
12, No. 4, April 1966, pp. 559-569.

Schwemm 72 Schwemm, Richard E., "Experience Gained in the Development and
Use of TSS," A Pga 9 ba =9 1972, pP. 559-569.

Stimler 69 Stimler, S., "Same Criteria for Time-Sharing System Per,
formance," aLtWIAO, Vol. 12, No. 1, January
1969, pp. 47-53.

Stone 80 Stone, Harold S. et al., TInduatjorD IQ 9M011or
Z , Science Research Associates, 2nd ed., 19

Svooodova 76 Svobodova, Liba, £mnu•tp Mf pM1i dad
E JiXJ.o H Analyhe annd inaons, Elsevier North-
Holland, Inc., 1976.

Watkins 77 Watkins, Shirley W. and Abrams, Marshall D., &lrv.n oL

Termi±nal kuitoar, National Bureau of Standards, 500-4, April

1977.

Georgia Institute of Technology Remote Terminal Emulator

